This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A is a member of the filter, then the filter truncated to A is a subset of the original filter. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfilss | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ( F |`t A ) C_ F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ( F |`t A ) = ran ( x e. F |-> ( x i^i A ) ) ) |
|
| 2 | filin | |- ( ( F e. ( Fil ` X ) /\ x e. F /\ A e. F ) -> ( x i^i A ) e. F ) |
|
| 3 | 2 | 3expa | |- ( ( ( F e. ( Fil ` X ) /\ x e. F ) /\ A e. F ) -> ( x i^i A ) e. F ) |
| 4 | 3 | an32s | |- ( ( ( F e. ( Fil ` X ) /\ A e. F ) /\ x e. F ) -> ( x i^i A ) e. F ) |
| 5 | 4 | fmpttd | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ( x e. F |-> ( x i^i A ) ) : F --> F ) |
| 6 | 5 | frnd | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ran ( x e. F |-> ( x i^i A ) ) C_ F ) |
| 7 | 1 6 | eqsstrd | |- ( ( F e. ( Fil ` X ) /\ A e. F ) -> ( F |`t A ) C_ F ) |