This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for the trace of a filter base F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfbas | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trfbas2 | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ) ) | |
| 2 | elfvdm | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑌 ) → 𝑌 ∈ dom fBas ) | |
| 3 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝑌 ∧ 𝑌 ∈ dom fBas ) → 𝐴 ∈ V ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝑌 ∈ dom fBas ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
| 5 | 2 4 | sylan | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → 𝐴 ∈ V ) |
| 6 | elrest | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ∈ V ) → ( ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) ) | |
| 7 | 5 6 | syldan | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) ) |
| 8 | 7 | notbid | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ¬ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) ) |
| 9 | nesym | ⊢ ( ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ∅ = ( 𝑣 ∩ 𝐴 ) ) | |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ∀ 𝑣 ∈ 𝐹 ¬ ∅ = ( 𝑣 ∩ 𝐴 ) ) |
| 11 | ralnex | ⊢ ( ∀ 𝑣 ∈ 𝐹 ¬ ∅ = ( 𝑣 ∩ 𝐴 ) ↔ ¬ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ↔ ¬ ∃ 𝑣 ∈ 𝐹 ∅ = ( 𝑣 ∩ 𝐴 ) ) |
| 13 | 8 12 | bitr4di | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ¬ ∅ ∈ ( 𝐹 ↾t 𝐴 ) ↔ ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |
| 14 | 1 13 | bitrd | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( 𝐹 ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ 𝐹 ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |