This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conditions for the trace of a filter base F to be a filter base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trfbas | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> ( ( F |`t A ) e. ( fBas ` A ) <-> A. v e. F ( v i^i A ) =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trfbas2 | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> ( ( F |`t A ) e. ( fBas ` A ) <-> -. (/) e. ( F |`t A ) ) ) |
|
| 2 | elfvdm | |- ( F e. ( fBas ` Y ) -> Y e. dom fBas ) |
|
| 3 | ssexg | |- ( ( A C_ Y /\ Y e. dom fBas ) -> A e. _V ) |
|
| 4 | 3 | ancoms | |- ( ( Y e. dom fBas /\ A C_ Y ) -> A e. _V ) |
| 5 | 2 4 | sylan | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> A e. _V ) |
| 6 | elrest | |- ( ( F e. ( fBas ` Y ) /\ A e. _V ) -> ( (/) e. ( F |`t A ) <-> E. v e. F (/) = ( v i^i A ) ) ) |
|
| 7 | 5 6 | syldan | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> ( (/) e. ( F |`t A ) <-> E. v e. F (/) = ( v i^i A ) ) ) |
| 8 | 7 | notbid | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> ( -. (/) e. ( F |`t A ) <-> -. E. v e. F (/) = ( v i^i A ) ) ) |
| 9 | nesym | |- ( ( v i^i A ) =/= (/) <-> -. (/) = ( v i^i A ) ) |
|
| 10 | 9 | ralbii | |- ( A. v e. F ( v i^i A ) =/= (/) <-> A. v e. F -. (/) = ( v i^i A ) ) |
| 11 | ralnex | |- ( A. v e. F -. (/) = ( v i^i A ) <-> -. E. v e. F (/) = ( v i^i A ) ) |
|
| 12 | 10 11 | bitri | |- ( A. v e. F ( v i^i A ) =/= (/) <-> -. E. v e. F (/) = ( v i^i A ) ) |
| 13 | 8 12 | bitr4di | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> ( -. (/) e. ( F |`t A ) <-> A. v e. F ( v i^i A ) =/= (/) ) ) |
| 14 | 1 13 | bitrd | |- ( ( F e. ( fBas ` Y ) /\ A C_ Y ) -> ( ( F |`t A ) e. ( fBas ` A ) <-> A. v e. F ( v i^i A ) =/= (/) ) ) |