This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for the transitivity of cosets by R . (Contributed by Peter Mazsa, 26-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trcoss | ⊢ ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moantr | ⊢ ( ∃* 𝑢 𝑢 𝑅 𝑦 → ( ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ∧ ∃ 𝑢 ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑅 𝑧 ) ) → ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑧 ) ) ) | |
| 2 | brcoss | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ≀ 𝑅 𝑦 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) ) | |
| 3 | 2 | el2v | ⊢ ( 𝑥 ≀ 𝑅 𝑦 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ) |
| 4 | brcoss | ⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ≀ 𝑅 𝑧 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑅 𝑧 ) ) ) | |
| 5 | 4 | el2v | ⊢ ( 𝑦 ≀ 𝑅 𝑧 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑅 𝑧 ) ) |
| 6 | 3 5 | anbi12i | ⊢ ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) ↔ ( ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑦 ) ∧ ∃ 𝑢 ( 𝑢 𝑅 𝑦 ∧ 𝑢 𝑅 𝑧 ) ) ) |
| 7 | brcoss | ⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ≀ 𝑅 𝑧 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑧 ) ) ) | |
| 8 | 7 | el2v | ⊢ ( 𝑥 ≀ 𝑅 𝑧 ↔ ∃ 𝑢 ( 𝑢 𝑅 𝑥 ∧ 𝑢 𝑅 𝑧 ) ) |
| 9 | 1 6 8 | 3imtr4g | ⊢ ( ∃* 𝑢 𝑢 𝑅 𝑦 → ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
| 10 | 9 | alrimiv | ⊢ ( ∃* 𝑢 𝑢 𝑅 𝑦 → ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
| 11 | 10 | alimi | ⊢ ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 → ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |
| 12 | 11 | alrimiv | ⊢ ( ∀ 𝑦 ∃* 𝑢 𝑢 𝑅 𝑦 → ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ≀ 𝑅 𝑦 ∧ 𝑦 ≀ 𝑅 𝑧 ) → 𝑥 ≀ 𝑅 𝑧 ) ) |