This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moantr | ⊢ ( ∃* 𝑥 𝜓 → ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom | ⊢ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ↔ ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) |
| 3 | 2 | anbi2i | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) ↔ ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) ) |
| 4 | 3anass | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ↔ ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) ↔ ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) |
| 6 | mopick2 | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜑 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) → ∃ 𝑥 ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ) |
| 8 | 3anass | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) ) | |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ↔ ∃ 𝑥 ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) ) |
| 10 | exsimpr | ⊢ ( ∃ 𝑥 ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) | |
| 11 | 9 10 | sylbi | ⊢ ( ∃ 𝑥 ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) |
| 12 | 7 11 | syl | ⊢ ( ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) |
| 13 | impexp | ⊢ ( ( ( ∃* 𝑥 𝜓 ∧ ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) ↔ ( ∃* 𝑥 𝜓 → ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) ) ) | |
| 14 | 12 13 | mpbi | ⊢ ( ∃* 𝑥 𝜓 → ( ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∃ 𝑥 ( 𝜓 ∧ 𝜒 ) ) → ∃ 𝑥 ( 𝜑 ∧ 𝜒 ) ) ) |