This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple is an unordered pair if and only if one of its elements is a proper class or is identical with one of the another elements. (Contributed by Alexander van der Vekens, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tppreqb | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ↔ { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ianor | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 2 | df-3or | ⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ↔ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ↔ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ¬ 𝐶 ≠ 𝐵 ) ) |
| 4 | orass | ⊢ ( ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ¬ 𝐶 ≠ 𝐵 ) ∨ ¬ 𝐶 ∈ V ) ↔ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ( ¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V ) ) ) | |
| 5 | ianor | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ) | |
| 6 | tpprceq3 | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } ) | |
| 7 | 5 6 | sylbir | ⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) → { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } ) |
| 8 | tpcoma | ⊢ { 𝐵 , 𝐴 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } | |
| 9 | prcom | ⊢ { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } | |
| 10 | 7 8 9 | 3eqtr3g | ⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 11 | orcom | ⊢ ( ( ¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 12 | ianor | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ( ¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V ) ↔ ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) ) |
| 14 | tpprceq3 | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) | |
| 15 | 13 14 | sylbi | ⊢ ( ( ¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 16 | 10 15 | jaoi | ⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ( ¬ 𝐶 ≠ 𝐵 ∨ ¬ 𝐶 ∈ V ) ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 17 | 4 16 | sylbi | ⊢ ( ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ¬ 𝐶 ≠ 𝐵 ) ∨ ¬ 𝐶 ∈ V ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 18 | 17 | orcs | ⊢ ( ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ) ∨ ¬ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 19 | 3 18 | sylbi | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 20 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 21 | 20 | eqeq1i | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| 22 | ssequn2 | ⊢ ( { 𝐶 } ⊆ { 𝐴 , 𝐵 } ↔ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) = { 𝐴 , 𝐵 } ) | |
| 23 | snssg | ⊢ ( 𝐶 ∈ V → ( 𝐶 ∈ { 𝐴 , 𝐵 } ↔ { 𝐶 } ⊆ { 𝐴 , 𝐵 } ) ) | |
| 24 | elpri | ⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) ) | |
| 25 | nne | ⊢ ( ¬ 𝐶 ≠ 𝐴 ↔ 𝐶 = 𝐴 ) | |
| 26 | 3mix2 | ⊢ ( ¬ 𝐶 ≠ 𝐴 → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 27 | 25 26 | sylbir | ⊢ ( 𝐶 = 𝐴 → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) |
| 28 | nne | ⊢ ( ¬ 𝐶 ≠ 𝐵 ↔ 𝐶 = 𝐵 ) | |
| 29 | 3mix3 | ⊢ ( ¬ 𝐶 ≠ 𝐵 → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 30 | 28 29 | sylbir | ⊢ ( 𝐶 = 𝐵 → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) |
| 31 | 27 30 | jaoi | ⊢ ( ( 𝐶 = 𝐴 ∨ 𝐶 = 𝐵 ) → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) |
| 32 | 24 31 | syl | ⊢ ( 𝐶 ∈ { 𝐴 , 𝐵 } → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) |
| 33 | 23 32 | biimtrrdi | ⊢ ( 𝐶 ∈ V → ( { 𝐶 } ⊆ { 𝐴 , 𝐵 } → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) ) |
| 34 | 3mix1 | ⊢ ( ¬ 𝐶 ∈ V → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 35 | 34 | a1d | ⊢ ( ¬ 𝐶 ∈ V → ( { 𝐶 } ⊆ { 𝐴 , 𝐵 } → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) ) |
| 36 | 33 35 | pm2.61i | ⊢ ( { 𝐶 } ⊆ { 𝐴 , 𝐵 } → ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐴 ∨ ¬ 𝐶 ≠ 𝐵 ) ) |
| 37 | 36 1 | sylibr | ⊢ ( { 𝐶 } ⊆ { 𝐴 , 𝐵 } → ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) |
| 38 | 22 37 | sylbir | ⊢ ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) = { 𝐴 , 𝐵 } → ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) |
| 39 | 21 38 | sylbi | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } → ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ) |
| 40 | 19 39 | impbii | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ∧ 𝐶 ≠ 𝐵 ) ↔ { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |