This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple is an unordered pair if and only if one of its elements is a proper class or is identical with one of the another elements. (Contributed by Alexander van der Vekens, 15-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tppreqb | |- ( -. ( C e. _V /\ C =/= A /\ C =/= B ) <-> { A , B , C } = { A , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ianor | |- ( -. ( C e. _V /\ C =/= A /\ C =/= B ) <-> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
|
| 2 | df-3or | |- ( ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) <-> ( ( -. C e. _V \/ -. C =/= A ) \/ -. C =/= B ) ) |
|
| 3 | 1 2 | bitri | |- ( -. ( C e. _V /\ C =/= A /\ C =/= B ) <-> ( ( -. C e. _V \/ -. C =/= A ) \/ -. C =/= B ) ) |
| 4 | orass | |- ( ( ( ( -. C e. _V \/ -. C =/= A ) \/ -. C =/= B ) \/ -. C e. _V ) <-> ( ( -. C e. _V \/ -. C =/= A ) \/ ( -. C =/= B \/ -. C e. _V ) ) ) |
|
| 5 | ianor | |- ( -. ( C e. _V /\ C =/= A ) <-> ( -. C e. _V \/ -. C =/= A ) ) |
|
| 6 | tpprceq3 | |- ( -. ( C e. _V /\ C =/= A ) -> { B , A , C } = { B , A } ) |
|
| 7 | 5 6 | sylbir | |- ( ( -. C e. _V \/ -. C =/= A ) -> { B , A , C } = { B , A } ) |
| 8 | tpcoma | |- { B , A , C } = { A , B , C } |
|
| 9 | prcom | |- { B , A } = { A , B } |
|
| 10 | 7 8 9 | 3eqtr3g | |- ( ( -. C e. _V \/ -. C =/= A ) -> { A , B , C } = { A , B } ) |
| 11 | orcom | |- ( ( -. C =/= B \/ -. C e. _V ) <-> ( -. C e. _V \/ -. C =/= B ) ) |
|
| 12 | ianor | |- ( -. ( C e. _V /\ C =/= B ) <-> ( -. C e. _V \/ -. C =/= B ) ) |
|
| 13 | 11 12 | bitr4i | |- ( ( -. C =/= B \/ -. C e. _V ) <-> -. ( C e. _V /\ C =/= B ) ) |
| 14 | tpprceq3 | |- ( -. ( C e. _V /\ C =/= B ) -> { A , B , C } = { A , B } ) |
|
| 15 | 13 14 | sylbi | |- ( ( -. C =/= B \/ -. C e. _V ) -> { A , B , C } = { A , B } ) |
| 16 | 10 15 | jaoi | |- ( ( ( -. C e. _V \/ -. C =/= A ) \/ ( -. C =/= B \/ -. C e. _V ) ) -> { A , B , C } = { A , B } ) |
| 17 | 4 16 | sylbi | |- ( ( ( ( -. C e. _V \/ -. C =/= A ) \/ -. C =/= B ) \/ -. C e. _V ) -> { A , B , C } = { A , B } ) |
| 18 | 17 | orcs | |- ( ( ( -. C e. _V \/ -. C =/= A ) \/ -. C =/= B ) -> { A , B , C } = { A , B } ) |
| 19 | 3 18 | sylbi | |- ( -. ( C e. _V /\ C =/= A /\ C =/= B ) -> { A , B , C } = { A , B } ) |
| 20 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 21 | 20 | eqeq1i | |- ( { A , B , C } = { A , B } <-> ( { A , B } u. { C } ) = { A , B } ) |
| 22 | ssequn2 | |- ( { C } C_ { A , B } <-> ( { A , B } u. { C } ) = { A , B } ) |
|
| 23 | snssg | |- ( C e. _V -> ( C e. { A , B } <-> { C } C_ { A , B } ) ) |
|
| 24 | elpri | |- ( C e. { A , B } -> ( C = A \/ C = B ) ) |
|
| 25 | nne | |- ( -. C =/= A <-> C = A ) |
|
| 26 | 3mix2 | |- ( -. C =/= A -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
|
| 27 | 25 26 | sylbir | |- ( C = A -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
| 28 | nne | |- ( -. C =/= B <-> C = B ) |
|
| 29 | 3mix3 | |- ( -. C =/= B -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
|
| 30 | 28 29 | sylbir | |- ( C = B -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
| 31 | 27 30 | jaoi | |- ( ( C = A \/ C = B ) -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
| 32 | 24 31 | syl | |- ( C e. { A , B } -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
| 33 | 23 32 | biimtrrdi | |- ( C e. _V -> ( { C } C_ { A , B } -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) ) |
| 34 | 3mix1 | |- ( -. C e. _V -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
|
| 35 | 34 | a1d | |- ( -. C e. _V -> ( { C } C_ { A , B } -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) ) |
| 36 | 33 35 | pm2.61i | |- ( { C } C_ { A , B } -> ( -. C e. _V \/ -. C =/= A \/ -. C =/= B ) ) |
| 37 | 36 1 | sylibr | |- ( { C } C_ { A , B } -> -. ( C e. _V /\ C =/= A /\ C =/= B ) ) |
| 38 | 22 37 | sylbir | |- ( ( { A , B } u. { C } ) = { A , B } -> -. ( C e. _V /\ C =/= A /\ C =/= B ) ) |
| 39 | 21 38 | sylbi | |- ( { A , B , C } = { A , B } -> -. ( C e. _V /\ C =/= A /\ C =/= B ) ) |
| 40 | 19 39 | impbii | |- ( -. ( C e. _V /\ C =/= A /\ C =/= B ) <-> { A , B , C } = { A , B } ) |