This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tpprceq3 | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) ↔ ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵 ) ) | |
| 2 | prprc2 | ⊢ ( ¬ 𝐶 ∈ V → { 𝐵 , 𝐶 } = { 𝐵 } ) | |
| 3 | 2 | uneq1d | ⊢ ( ¬ 𝐶 ∈ V → ( { 𝐵 , 𝐶 } ∪ { 𝐴 } ) = ( { 𝐵 } ∪ { 𝐴 } ) ) |
| 4 | tprot | ⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } | |
| 5 | df-tp | ⊢ { 𝐵 , 𝐶 , 𝐴 } = ( { 𝐵 , 𝐶 } ∪ { 𝐴 } ) | |
| 6 | 4 5 | eqtri | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐵 , 𝐶 } ∪ { 𝐴 } ) |
| 7 | prcom | ⊢ { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 } | |
| 8 | df-pr | ⊢ { 𝐵 , 𝐴 } = ( { 𝐵 } ∪ { 𝐴 } ) | |
| 9 | 7 8 | eqtri | ⊢ { 𝐴 , 𝐵 } = ( { 𝐵 } ∪ { 𝐴 } ) |
| 10 | 3 6 9 | 3eqtr4g | ⊢ ( ¬ 𝐶 ∈ V → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 11 | nne | ⊢ ( ¬ 𝐶 ≠ 𝐵 ↔ 𝐶 = 𝐵 ) | |
| 12 | tppreq3 | ⊢ ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) | |
| 13 | 12 | eqcoms | ⊢ ( 𝐶 = 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 14 | 11 13 | sylbi | ⊢ ( ¬ 𝐶 ≠ 𝐵 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 15 | 10 14 | jaoi | ⊢ ( ( ¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 16 | 1 15 | sylbi | ⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐵 ) → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |