This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function that fills in the topology and metric components of a structure given a group and a norm on it. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tng | ⊢ toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctng | ⊢ toNrmGrp | |
| 1 | vg | ⊢ 𝑔 | |
| 2 | cvv | ⊢ V | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | 1 | cv | ⊢ 𝑔 |
| 5 | csts | ⊢ sSet | |
| 6 | cds | ⊢ dist | |
| 7 | cnx | ⊢ ndx | |
| 8 | 7 6 | cfv | ⊢ ( dist ‘ ndx ) |
| 9 | 3 | cv | ⊢ 𝑓 |
| 10 | csg | ⊢ -g | |
| 11 | 4 10 | cfv | ⊢ ( -g ‘ 𝑔 ) |
| 12 | 9 11 | ccom | ⊢ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) |
| 13 | 8 12 | cop | ⊢ 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 |
| 14 | 4 13 5 | co | ⊢ ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) |
| 15 | cts | ⊢ TopSet | |
| 16 | 7 15 | cfv | ⊢ ( TopSet ‘ ndx ) |
| 17 | cmopn | ⊢ MetOpen | |
| 18 | 12 17 | cfv | ⊢ ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) |
| 19 | 16 18 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 |
| 20 | 14 19 5 | co | ⊢ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) |
| 21 | 1 3 2 2 20 | cmpo | ⊢ ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) ) |
| 22 | 0 21 | wceq | ⊢ toNrmGrp = ( 𝑔 ∈ V , 𝑓 ∈ V ↦ ( ( 𝑔 sSet 〈 ( dist ‘ ndx ) , ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑓 ∘ ( -g ‘ 𝑔 ) ) ) 〉 ) ) |