This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tngbas and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tnglem.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| tnglem.t | ⊢ ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx ) | ||
| tnglem.d | ⊢ ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx ) | ||
| Assertion | tnglem | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tnglem.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 3 | tnglem.t | ⊢ ( 𝐸 ‘ ndx ) ≠ ( TopSet ‘ ndx ) | |
| 4 | tnglem.d | ⊢ ( 𝐸 ‘ ndx ) ≠ ( dist ‘ ndx ) | |
| 5 | 2 4 | setsnid | ⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ) |
| 6 | 2 3 | setsnid | ⊢ ( 𝐸 ‘ ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
| 7 | 5 6 | eqtri | ⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
| 8 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) | |
| 10 | eqid | ⊢ ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) = ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) | |
| 11 | 1 8 9 10 | tngval | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → 𝑇 = ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝑇 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( dist ‘ ndx ) , ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) 〉 ) sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ) 〉 ) ) ) |
| 13 | 7 12 | eqtr4id | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
| 14 | 2 | str0 | ⊢ ∅ = ( 𝐸 ‘ ∅ ) |
| 15 | 14 | eqcomi | ⊢ ( 𝐸 ‘ ∅ ) = ∅ |
| 16 | reldmtng | ⊢ Rel dom toNrmGrp | |
| 17 | 15 1 16 | oveqprc | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
| 18 | 17 | adantr | ⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉 ) → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |
| 19 | 13 18 | pm2.61ian | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑇 ) ) |