This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tngbas and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| tnglem.e | |- E = Slot ( E ` ndx ) |
||
| tnglem.t | |- ( E ` ndx ) =/= ( TopSet ` ndx ) |
||
| tnglem.d | |- ( E ` ndx ) =/= ( dist ` ndx ) |
||
| Assertion | tnglem | |- ( N e. V -> ( E ` G ) = ( E ` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngbas.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tnglem.e | |- E = Slot ( E ` ndx ) |
|
| 3 | tnglem.t | |- ( E ` ndx ) =/= ( TopSet ` ndx ) |
|
| 4 | tnglem.d | |- ( E ` ndx ) =/= ( dist ` ndx ) |
|
| 5 | 2 4 | setsnid | |- ( E ` G ) = ( E ` ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) ) |
| 6 | 2 3 | setsnid | |- ( E ` ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) ) = ( E ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
| 7 | 5 6 | eqtri | |- ( E ` G ) = ( E ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
| 8 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 9 | eqid | |- ( N o. ( -g ` G ) ) = ( N o. ( -g ` G ) ) |
|
| 10 | eqid | |- ( MetOpen ` ( N o. ( -g ` G ) ) ) = ( MetOpen ` ( N o. ( -g ` G ) ) ) |
|
| 11 | 1 8 9 10 | tngval | |- ( ( G e. _V /\ N e. V ) -> T = ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) |
| 12 | 11 | fveq2d | |- ( ( G e. _V /\ N e. V ) -> ( E ` T ) = ( E ` ( ( G sSet <. ( dist ` ndx ) , ( N o. ( -g ` G ) ) >. ) sSet <. ( TopSet ` ndx ) , ( MetOpen ` ( N o. ( -g ` G ) ) ) >. ) ) ) |
| 13 | 7 12 | eqtr4id | |- ( ( G e. _V /\ N e. V ) -> ( E ` G ) = ( E ` T ) ) |
| 14 | 2 | str0 | |- (/) = ( E ` (/) ) |
| 15 | 14 | eqcomi | |- ( E ` (/) ) = (/) |
| 16 | reldmtng | |- Rel dom toNrmGrp |
|
| 17 | 15 1 16 | oveqprc | |- ( -. G e. _V -> ( E ` G ) = ( E ` T ) ) |
| 18 | 17 | adantr | |- ( ( -. G e. _V /\ N e. V ) -> ( E ` G ) = ( E ` T ) ) |
| 19 | 13 18 | pm2.61ian | |- ( N e. V -> ( E ` G ) = ( E ` T ) ) |