This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tms | ⊢ toMetSp = ( 𝑑 ∈ ∪ ran ∞Met ↦ ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctms | ⊢ toMetSp | |
| 1 | vd | ⊢ 𝑑 | |
| 2 | cxmet | ⊢ ∞Met | |
| 3 | 2 | crn | ⊢ ran ∞Met |
| 4 | 3 | cuni | ⊢ ∪ ran ∞Met |
| 5 | cbs | ⊢ Base | |
| 6 | cnx | ⊢ ndx | |
| 7 | 6 5 | cfv | ⊢ ( Base ‘ ndx ) |
| 8 | 1 | cv | ⊢ 𝑑 |
| 9 | 8 | cdm | ⊢ dom 𝑑 |
| 10 | 9 | cdm | ⊢ dom dom 𝑑 |
| 11 | 7 10 | cop | ⊢ 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 |
| 12 | cds | ⊢ dist | |
| 13 | 6 12 | cfv | ⊢ ( dist ‘ ndx ) |
| 14 | 13 8 | cop | ⊢ 〈 ( dist ‘ ndx ) , 𝑑 〉 |
| 15 | 11 14 | cpr | ⊢ { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } |
| 16 | csts | ⊢ sSet | |
| 17 | cts | ⊢ TopSet | |
| 18 | 6 17 | cfv | ⊢ ( TopSet ‘ ndx ) |
| 19 | cmopn | ⊢ MetOpen | |
| 20 | 8 19 | cfv | ⊢ ( MetOpen ‘ 𝑑 ) |
| 21 | 18 20 | cop | ⊢ 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 |
| 22 | 15 21 16 | co | ⊢ ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) |
| 23 | 1 4 22 | cmpt | ⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) ) |
| 24 | 0 23 | wceq | ⊢ toMetSp = ( 𝑑 ∈ ∪ ran ∞Met ↦ ( { 〈 ( Base ‘ ndx ) , dom dom 𝑑 〉 , 〈 ( dist ‘ ndx ) , 𝑑 〉 } sSet 〈 ( TopSet ‘ ndx ) , ( MetOpen ‘ 𝑑 ) 〉 ) ) |