This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Hilbert lattice of closed subspaces of a given pre-Hilbert space. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-thl | ⊢ toHL = ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cthl | ⊢ toHL | |
| 1 | vh | ⊢ ℎ | |
| 2 | cvv | ⊢ V | |
| 3 | cipo | ⊢ toInc | |
| 4 | ccss | ⊢ ClSubSp | |
| 5 | 1 | cv | ⊢ ℎ |
| 6 | 5 4 | cfv | ⊢ ( ClSubSp ‘ ℎ ) |
| 7 | 6 3 | cfv | ⊢ ( toInc ‘ ( ClSubSp ‘ ℎ ) ) |
| 8 | csts | ⊢ sSet | |
| 9 | coc | ⊢ oc | |
| 10 | cnx | ⊢ ndx | |
| 11 | 10 9 | cfv | ⊢ ( oc ‘ ndx ) |
| 12 | cocv | ⊢ ocv | |
| 13 | 5 12 | cfv | ⊢ ( ocv ‘ ℎ ) |
| 14 | 11 13 | cop | ⊢ 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 |
| 15 | 7 14 8 | co | ⊢ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) |
| 16 | 1 2 15 | cmpt | ⊢ ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) |
| 17 | 0 16 | wceq | ⊢ toHL = ( ℎ ∈ V ↦ ( ( toInc ‘ ( ClSubSp ‘ ℎ ) ) sSet 〈 ( oc ‘ ndx ) , ( ocv ‘ ℎ ) 〉 ) ) |