This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| thloc.c | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | ||
| Assertion | thloc | ⊢ ⊥ = ( oc ‘ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | ⊢ 𝐾 = ( toHL ‘ 𝑊 ) | |
| 2 | thloc.c | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 3 | fvex | ⊢ ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) ∈ V | |
| 4 | 2 | fvexi | ⊢ ⊥ ∈ V |
| 5 | ocid | ⊢ oc = Slot ( oc ‘ ndx ) | |
| 6 | 5 | setsid | ⊢ ( ( ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) ∈ V ∧ ⊥ ∈ V ) → ⊥ = ( oc ‘ ( ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) ) |
| 7 | 3 4 6 | mp2an | ⊢ ⊥ = ( oc ‘ ( ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
| 8 | eqid | ⊢ ( ClSubSp ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) = ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) | |
| 10 | 1 8 9 2 | thlval | ⊢ ( 𝑊 ∈ V → 𝐾 = ( ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑊 ∈ V → ( oc ‘ 𝐾 ) = ( oc ‘ ( ( toInc ‘ ( ClSubSp ‘ 𝑊 ) ) sSet 〈 ( oc ‘ ndx ) , ⊥ 〉 ) ) ) |
| 12 | 7 11 | eqtr4id | ⊢ ( 𝑊 ∈ V → ⊥ = ( oc ‘ 𝐾 ) ) |
| 13 | 5 | str0 | ⊢ ∅ = ( oc ‘ ∅ ) |
| 14 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( ocv ‘ 𝑊 ) = ∅ ) | |
| 15 | 2 14 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → ⊥ = ∅ ) |
| 16 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( toHL ‘ 𝑊 ) = ∅ ) | |
| 17 | 1 16 | eqtrid | ⊢ ( ¬ 𝑊 ∈ V → 𝐾 = ∅ ) |
| 18 | 17 | fveq2d | ⊢ ( ¬ 𝑊 ∈ V → ( oc ‘ 𝐾 ) = ( oc ‘ ∅ ) ) |
| 19 | 13 15 18 | 3eqtr4a | ⊢ ( ¬ 𝑊 ∈ V → ⊥ = ( oc ‘ 𝐾 ) ) |
| 20 | 12 19 | pm2.61i | ⊢ ⊥ = ( oc ‘ 𝐾 ) |