This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement on the Hilbert lattice of closed subspaces. (Contributed by Mario Carneiro, 25-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thlval.k | |- K = ( toHL ` W ) |
|
| thloc.c | |- ._|_ = ( ocv ` W ) |
||
| Assertion | thloc | |- ._|_ = ( oc ` K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thlval.k | |- K = ( toHL ` W ) |
|
| 2 | thloc.c | |- ._|_ = ( ocv ` W ) |
|
| 3 | fvex | |- ( toInc ` ( ClSubSp ` W ) ) e. _V |
|
| 4 | 2 | fvexi | |- ._|_ e. _V |
| 5 | ocid | |- oc = Slot ( oc ` ndx ) |
|
| 6 | 5 | setsid | |- ( ( ( toInc ` ( ClSubSp ` W ) ) e. _V /\ ._|_ e. _V ) -> ._|_ = ( oc ` ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) ) |
| 7 | 3 4 6 | mp2an | |- ._|_ = ( oc ` ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) |
| 8 | eqid | |- ( ClSubSp ` W ) = ( ClSubSp ` W ) |
|
| 9 | eqid | |- ( toInc ` ( ClSubSp ` W ) ) = ( toInc ` ( ClSubSp ` W ) ) |
|
| 10 | 1 8 9 2 | thlval | |- ( W e. _V -> K = ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) |
| 11 | 10 | fveq2d | |- ( W e. _V -> ( oc ` K ) = ( oc ` ( ( toInc ` ( ClSubSp ` W ) ) sSet <. ( oc ` ndx ) , ._|_ >. ) ) ) |
| 12 | 7 11 | eqtr4id | |- ( W e. _V -> ._|_ = ( oc ` K ) ) |
| 13 | 5 | str0 | |- (/) = ( oc ` (/) ) |
| 14 | fvprc | |- ( -. W e. _V -> ( ocv ` W ) = (/) ) |
|
| 15 | 2 14 | eqtrid | |- ( -. W e. _V -> ._|_ = (/) ) |
| 16 | fvprc | |- ( -. W e. _V -> ( toHL ` W ) = (/) ) |
|
| 17 | 1 16 | eqtrid | |- ( -. W e. _V -> K = (/) ) |
| 18 | 17 | fveq2d | |- ( -. W e. _V -> ( oc ` K ) = ( oc ` (/) ) ) |
| 19 | 13 15 18 | 3eqtr4a | |- ( -. W e. _V -> ._|_ = ( oc ` K ) ) |
| 20 | 12 19 | pm2.61i | |- ._|_ = ( oc ` K ) |