This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of Suppes p. 197. The wff ta is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfinds2.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| tfinds2.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| tfinds2.3 | |- ( x = suc y -> ( ph <-> th ) ) |
||
| tfinds2.4 | |- ( ta -> ps ) |
||
| tfinds2.5 | |- ( y e. On -> ( ta -> ( ch -> th ) ) ) |
||
| tfinds2.6 | |- ( Lim x -> ( ta -> ( A. y e. x ch -> ph ) ) ) |
||
| Assertion | tfinds2 | |- ( x e. On -> ( ta -> ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfinds2.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| 2 | tfinds2.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | tfinds2.3 | |- ( x = suc y -> ( ph <-> th ) ) |
|
| 4 | tfinds2.4 | |- ( ta -> ps ) |
|
| 5 | tfinds2.5 | |- ( y e. On -> ( ta -> ( ch -> th ) ) ) |
|
| 6 | tfinds2.6 | |- ( Lim x -> ( ta -> ( A. y e. x ch -> ph ) ) ) |
|
| 7 | 0ex | |- (/) e. _V |
|
| 8 | 1 | imbi2d | |- ( x = (/) -> ( ( ta -> ph ) <-> ( ta -> ps ) ) ) |
| 9 | 7 8 | sbcie | |- ( [. (/) / x ]. ( ta -> ph ) <-> ( ta -> ps ) ) |
| 10 | 4 9 | mpbir | |- [. (/) / x ]. ( ta -> ph ) |
| 11 | 5 | a2d | |- ( y e. On -> ( ( ta -> ch ) -> ( ta -> th ) ) ) |
| 12 | 11 | sbcth | |- ( x e. _V -> [. x / y ]. ( y e. On -> ( ( ta -> ch ) -> ( ta -> th ) ) ) ) |
| 13 | 12 | elv | |- [. x / y ]. ( y e. On -> ( ( ta -> ch ) -> ( ta -> th ) ) ) |
| 14 | sbcimg | |- ( x e. _V -> ( [. x / y ]. ( y e. On -> ( ( ta -> ch ) -> ( ta -> th ) ) ) <-> ( [. x / y ]. y e. On -> [. x / y ]. ( ( ta -> ch ) -> ( ta -> th ) ) ) ) ) |
|
| 15 | 14 | elv | |- ( [. x / y ]. ( y e. On -> ( ( ta -> ch ) -> ( ta -> th ) ) ) <-> ( [. x / y ]. y e. On -> [. x / y ]. ( ( ta -> ch ) -> ( ta -> th ) ) ) ) |
| 16 | 13 15 | mpbi | |- ( [. x / y ]. y e. On -> [. x / y ]. ( ( ta -> ch ) -> ( ta -> th ) ) ) |
| 17 | sbcel1v | |- ( [. x / y ]. y e. On <-> x e. On ) |
|
| 18 | sbcimg | |- ( x e. _V -> ( [. x / y ]. ( ( ta -> ch ) -> ( ta -> th ) ) <-> ( [. x / y ]. ( ta -> ch ) -> [. x / y ]. ( ta -> th ) ) ) ) |
|
| 19 | 18 | elv | |- ( [. x / y ]. ( ( ta -> ch ) -> ( ta -> th ) ) <-> ( [. x / y ]. ( ta -> ch ) -> [. x / y ]. ( ta -> th ) ) ) |
| 20 | 16 17 19 | 3imtr3i | |- ( x e. On -> ( [. x / y ]. ( ta -> ch ) -> [. x / y ]. ( ta -> th ) ) ) |
| 21 | vex | |- x e. _V |
|
| 22 | 2 | bicomd | |- ( x = y -> ( ch <-> ph ) ) |
| 23 | 22 | equcoms | |- ( y = x -> ( ch <-> ph ) ) |
| 24 | 23 | imbi2d | |- ( y = x -> ( ( ta -> ch ) <-> ( ta -> ph ) ) ) |
| 25 | 21 24 | sbcie | |- ( [. x / y ]. ( ta -> ch ) <-> ( ta -> ph ) ) |
| 26 | vex | |- y e. _V |
|
| 27 | 26 | sucex | |- suc y e. _V |
| 28 | 3 | imbi2d | |- ( x = suc y -> ( ( ta -> ph ) <-> ( ta -> th ) ) ) |
| 29 | 27 28 | sbcie | |- ( [. suc y / x ]. ( ta -> ph ) <-> ( ta -> th ) ) |
| 30 | 29 | sbcbii | |- ( [. x / y ]. [. suc y / x ]. ( ta -> ph ) <-> [. x / y ]. ( ta -> th ) ) |
| 31 | suceq | |- ( x = y -> suc x = suc y ) |
|
| 32 | 31 | sbcco2 | |- ( [. x / y ]. [. suc y / x ]. ( ta -> ph ) <-> [. suc x / x ]. ( ta -> ph ) ) |
| 33 | 30 32 | bitr3i | |- ( [. x / y ]. ( ta -> th ) <-> [. suc x / x ]. ( ta -> ph ) ) |
| 34 | 20 25 33 | 3imtr3g | |- ( x e. On -> ( ( ta -> ph ) -> [. suc x / x ]. ( ta -> ph ) ) ) |
| 35 | 2 | imbi2d | |- ( x = y -> ( ( ta -> ph ) <-> ( ta -> ch ) ) ) |
| 36 | 35 | sbralie | |- ( A. x e. y ( ta -> ph ) <-> [ y / x ] A. y e. x ( ta -> ch ) ) |
| 37 | sbsbc | |- ( [ y / x ] A. y e. x ( ta -> ch ) <-> [. y / x ]. A. y e. x ( ta -> ch ) ) |
|
| 38 | 36 37 | bitr2i | |- ( [. y / x ]. A. y e. x ( ta -> ch ) <-> A. x e. y ( ta -> ph ) ) |
| 39 | r19.21v | |- ( A. y e. x ( ta -> ch ) <-> ( ta -> A. y e. x ch ) ) |
|
| 40 | 6 | a2d | |- ( Lim x -> ( ( ta -> A. y e. x ch ) -> ( ta -> ph ) ) ) |
| 41 | 39 40 | biimtrid | |- ( Lim x -> ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) |
| 42 | 41 | sbcth | |- ( y e. _V -> [. y / x ]. ( Lim x -> ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) ) |
| 43 | 42 | elv | |- [. y / x ]. ( Lim x -> ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) |
| 44 | sbcimg | |- ( y e. _V -> ( [. y / x ]. ( Lim x -> ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) <-> ( [. y / x ]. Lim x -> [. y / x ]. ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) ) ) |
|
| 45 | 44 | elv | |- ( [. y / x ]. ( Lim x -> ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) <-> ( [. y / x ]. Lim x -> [. y / x ]. ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) ) |
| 46 | 43 45 | mpbi | |- ( [. y / x ]. Lim x -> [. y / x ]. ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) ) |
| 47 | limeq | |- ( x = y -> ( Lim x <-> Lim y ) ) |
|
| 48 | 26 47 | sbcie | |- ( [. y / x ]. Lim x <-> Lim y ) |
| 49 | sbcimg | |- ( y e. _V -> ( [. y / x ]. ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) <-> ( [. y / x ]. A. y e. x ( ta -> ch ) -> [. y / x ]. ( ta -> ph ) ) ) ) |
|
| 50 | 49 | elv | |- ( [. y / x ]. ( A. y e. x ( ta -> ch ) -> ( ta -> ph ) ) <-> ( [. y / x ]. A. y e. x ( ta -> ch ) -> [. y / x ]. ( ta -> ph ) ) ) |
| 51 | 46 48 50 | 3imtr3i | |- ( Lim y -> ( [. y / x ]. A. y e. x ( ta -> ch ) -> [. y / x ]. ( ta -> ph ) ) ) |
| 52 | 38 51 | biimtrrid | |- ( Lim y -> ( A. x e. y ( ta -> ph ) -> [. y / x ]. ( ta -> ph ) ) ) |
| 53 | 10 34 52 | tfindes | |- ( x e. On -> ( ta -> ph ) ) |