This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023) Relax condition for being in the universal class. (Revised by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsnbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnr | ⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 → 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 ∈ 𝐹 → 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
| 3 | fnfun | ⊢ ( 𝐹 Fn { 𝐴 } → Fun 𝐹 ) | |
| 4 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → 𝐴 ∈ { 𝐴 } ) |
| 6 | fndm | ⊢ ( 𝐹 Fn { 𝐴 } → dom 𝐹 = { 𝐴 } ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → dom 𝐹 = { 𝐴 } ) |
| 8 | 5 7 | eleqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → 𝐴 ∈ dom 𝐹 ) |
| 9 | funfvop | ⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) | |
| 10 | 3 8 9 | syl2an2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
| 11 | eleq1 | ⊢ ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → ( 𝑥 ∈ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) | |
| 12 | 10 11 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → 𝑥 ∈ 𝐹 ) ) |
| 13 | 2 12 | impbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 ∈ 𝐹 ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
| 14 | velsn | ⊢ ( 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) | |
| 15 | 13 14 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → ( 𝑥 ∈ 𝐹 ↔ 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 16 | 15 | eqrdv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 Fn { 𝐴 } ) → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 17 | 16 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 Fn { 𝐴 } → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 18 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 19 | fnsng | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) | |
| 20 | 18 19 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) |
| 21 | fneq1 | ⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → ( 𝐹 Fn { 𝐴 } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) ) | |
| 22 | 20 21 | syl5ibrcom | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → 𝐹 Fn { 𝐴 } ) ) |
| 23 | 17 22 | impbid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |