This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The transitive closure function is idempotent. (Contributed by Mario Carneiro, 23-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tcidm | ⊢ ( TC ‘ ( TC ‘ 𝐴 ) ) = ( TC ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) | |
| 2 | tctr | ⊢ Tr ( TC ‘ 𝐴 ) | |
| 3 | fvex | ⊢ ( TC ‘ 𝐴 ) ∈ V | |
| 4 | tcmin | ⊢ ( ( TC ‘ 𝐴 ) ∈ V → ( ( ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) ∧ Tr ( TC ‘ 𝐴 ) ) → ( TC ‘ ( TC ‘ 𝐴 ) ) ⊆ ( TC ‘ 𝐴 ) ) ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ( ( TC ‘ 𝐴 ) ⊆ ( TC ‘ 𝐴 ) ∧ Tr ( TC ‘ 𝐴 ) ) → ( TC ‘ ( TC ‘ 𝐴 ) ) ⊆ ( TC ‘ 𝐴 ) ) |
| 6 | 1 2 5 | mp2an | ⊢ ( TC ‘ ( TC ‘ 𝐴 ) ) ⊆ ( TC ‘ 𝐴 ) |
| 7 | tcid | ⊢ ( ( TC ‘ 𝐴 ) ∈ V → ( TC ‘ 𝐴 ) ⊆ ( TC ‘ ( TC ‘ 𝐴 ) ) ) | |
| 8 | 3 7 | ax-mp | ⊢ ( TC ‘ 𝐴 ) ⊆ ( TC ‘ ( TC ‘ 𝐴 ) ) |
| 9 | 6 8 | eqssi | ⊢ ( TC ‘ ( TC ‘ 𝐴 ) ) = ( TC ‘ 𝐴 ) |