This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Justification for tbw-negdf . (Contributed by Anthony Hart, 15-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tbw-bijust | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) | |
| 2 | pm2.21 | ⊢ ( ¬ ( 𝜓 → 𝜑 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) | |
| 3 | 2 | imim2i | ⊢ ( ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 4 | id | ⊢ ( ¬ ( 𝜓 → 𝜑 ) → ¬ ( 𝜓 → 𝜑 ) ) | |
| 5 | falim | ⊢ ( ⊥ → ¬ ( 𝜓 → 𝜑 ) ) | |
| 6 | 4 5 | ja | ⊢ ( ( ( 𝜓 → 𝜑 ) → ⊥ ) → ¬ ( 𝜓 → 𝜑 ) ) |
| 7 | 6 | imim2i | ⊢ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |
| 8 | 3 7 | impbii | ⊢ ( ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ↔ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 9 | 8 | notbii | ⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 10 | pm2.21 | ⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) | |
| 11 | ax-1 | ⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) ) | |
| 12 | falim | ⊢ ( ⊥ → ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) ) | |
| 13 | 11 12 | ja | ⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) ) |
| 14 | 13 | pm2.43i | ⊢ ( ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) → ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ) |
| 15 | 10 14 | impbii | ⊢ ( ¬ ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) ↔ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) |
| 16 | 1 9 15 | 3bitri | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( ( 𝜑 → 𝜓 ) → ( ( 𝜓 → 𝜑 ) → ⊥ ) ) → ⊥ ) ) |