This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Justification for tbw-negdf . (Contributed by Anthony Hart, 15-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tbw-bijust | |- ( ( ph <-> ps ) <-> ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi1 | |- ( ( ph <-> ps ) <-> -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |
|
| 2 | pm2.21 | |- ( -. ( ps -> ph ) -> ( ( ps -> ph ) -> F. ) ) |
|
| 3 | 2 | imim2i | |- ( ( ( ph -> ps ) -> -. ( ps -> ph ) ) -> ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) |
| 4 | id | |- ( -. ( ps -> ph ) -> -. ( ps -> ph ) ) |
|
| 5 | falim | |- ( F. -> -. ( ps -> ph ) ) |
|
| 6 | 4 5 | ja | |- ( ( ( ps -> ph ) -> F. ) -> -. ( ps -> ph ) ) |
| 7 | 6 | imim2i | |- ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> ( ( ph -> ps ) -> -. ( ps -> ph ) ) ) |
| 8 | 3 7 | impbii | |- ( ( ( ph -> ps ) -> -. ( ps -> ph ) ) <-> ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) |
| 9 | 8 | notbii | |- ( -. ( ( ph -> ps ) -> -. ( ps -> ph ) ) <-> -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) |
| 10 | pm2.21 | |- ( -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) ) |
|
| 11 | ax-1 | |- ( -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> ( ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) -> -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) ) |
|
| 12 | falim | |- ( F. -> ( ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) -> -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) ) |
|
| 13 | 11 12 | ja | |- ( ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) -> ( ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) -> -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) ) |
| 14 | 13 | pm2.43i | |- ( ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) -> -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) ) |
| 15 | 10 14 | impbii | |- ( -. ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) <-> ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) ) |
| 16 | 1 9 15 | 3bitri | |- ( ( ph <-> ps ) <-> ( ( ( ph -> ps ) -> ( ( ps -> ph ) -> F. ) ) -> F. ) ) |