This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate the biconditional connective to primitive connectives. See dfbi1ALT for an unusual version proved directly from axioms. (Contributed by NM, 29-Dec-1992)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfbi1 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi | ⊢ ¬ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) | |
| 2 | impbi | ⊢ ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ( ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) ) ) | |
| 3 | 2 | con3rr3 | ⊢ ( ¬ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ( ( ( 𝜑 ↔ 𝜓 ) → ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) → ¬ ( ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) → ( 𝜑 ↔ 𝜓 ) ) ) ) |
| 4 | 1 3 | mt3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ¬ ( ( 𝜑 → 𝜓 ) → ¬ ( 𝜓 → 𝜑 ) ) ) |