This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the tangent function. We define it this way for cmpt , which requires the form ( x e. A |-> B ) . (Contributed by Mario Carneiro, 14-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tan | ⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctan | ⊢ tan | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | ccos | ⊢ cos | |
| 3 | 2 | ccnv | ⊢ ◡ cos |
| 4 | cc | ⊢ ℂ | |
| 5 | cc0 | ⊢ 0 | |
| 6 | 5 | csn | ⊢ { 0 } |
| 7 | 4 6 | cdif | ⊢ ( ℂ ∖ { 0 } ) |
| 8 | 3 7 | cima | ⊢ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) |
| 9 | csin | ⊢ sin | |
| 10 | 1 | cv | ⊢ 𝑥 |
| 11 | 10 9 | cfv | ⊢ ( sin ‘ 𝑥 ) |
| 12 | cdiv | ⊢ / | |
| 13 | 10 2 | cfv | ⊢ ( cos ‘ 𝑥 ) |
| 14 | 11 13 12 | co | ⊢ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) |
| 15 | 1 8 14 | cmpt | ⊢ ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |
| 16 | 0 15 | wceq | ⊢ tan = ( 𝑥 ∈ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ↦ ( ( sin ‘ 𝑥 ) / ( cos ‘ 𝑥 ) ) ) |