This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | ||
| symgfixf.q | |||
| symgfixf.s | |||
| symgfixf.h | |||
| Assertion | symgfixf1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | ||
| 2 | symgfixf.q | ||
| 3 | symgfixf.s | ||
| 4 | symgfixf.h | ||
| 5 | 1 2 3 4 | symgfixf1 | |
| 6 | 5 | adantl | |
| 7 | 1 2 3 4 | symgfixfo | |
| 8 | df-f1o | ||
| 9 | 6 7 8 | sylanbrc |