This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group operation of the symmetric group on A is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by Mario Carneiro, 28-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgov.1 | |- G = ( SymGrp ` A ) |
|
| symgov.2 | |- B = ( Base ` G ) |
||
| symgov.3 | |- .+ = ( +g ` G ) |
||
| Assertion | symgcl | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgov.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgov.2 | |- B = ( Base ` G ) |
|
| 3 | symgov.3 | |- .+ = ( +g ` G ) |
|
| 4 | 1 2 3 | symgov | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) = ( X o. Y ) ) |
| 5 | 1 2 | symgbasf1o | |- ( X e. B -> X : A -1-1-onto-> A ) |
| 6 | 1 2 | symgbasf1o | |- ( Y e. B -> Y : A -1-1-onto-> A ) |
| 7 | f1oco | |- ( ( X : A -1-1-onto-> A /\ Y : A -1-1-onto-> A ) -> ( X o. Y ) : A -1-1-onto-> A ) |
|
| 8 | 5 6 7 | syl2an | |- ( ( X e. B /\ Y e. B ) -> ( X o. Y ) : A -1-1-onto-> A ) |
| 9 | coexg | |- ( ( X e. B /\ Y e. B ) -> ( X o. Y ) e. _V ) |
|
| 10 | 1 2 | elsymgbas2 | |- ( ( X o. Y ) e. _V -> ( ( X o. Y ) e. B <-> ( X o. Y ) : A -1-1-onto-> A ) ) |
| 11 | 9 10 | syl | |- ( ( X e. B /\ Y e. B ) -> ( ( X o. Y ) e. B <-> ( X o. Y ) : A -1-1-onto-> A ) ) |
| 12 | 8 11 | mpbird | |- ( ( X e. B /\ Y e. B ) -> ( X o. Y ) e. B ) |
| 13 | 4 12 | eqeltrd | |- ( ( X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |