This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on class A is the set of functions from A into itself. (Contributed by AV, 29-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | efmndbasabf | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efmndbas.g | ⊢ 𝐺 = ( EndoFMnd ‘ 𝐴 ) | |
| 2 | efmndbas.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | 1 2 | efmndbas | ⊢ 𝐵 = ( 𝐴 ↑m 𝐴 ) |
| 4 | mapvalg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐴 ↑m 𝐴 ) = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) | |
| 5 | 4 | anidms | ⊢ ( 𝐴 ∈ V → ( 𝐴 ↑m 𝐴 ) = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) |
| 6 | 3 5 | eqtrid | ⊢ ( 𝐴 ∈ V → 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) |
| 7 | base0 | ⊢ ∅ = ( Base ‘ ∅ ) | |
| 8 | 7 | eqcomi | ⊢ ( Base ‘ ∅ ) = ∅ |
| 9 | fvprc | ⊢ ( ¬ 𝐴 ∈ V → ( EndoFMnd ‘ 𝐴 ) = ∅ ) | |
| 10 | 1 9 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → 𝐺 = ∅ ) |
| 11 | 10 | fveq2d | ⊢ ( ¬ 𝐴 ∈ V → ( Base ‘ 𝐺 ) = ( Base ‘ ∅ ) ) |
| 12 | 2 11 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → 𝐵 = ( Base ‘ ∅ ) ) |
| 13 | mapprc | ⊢ ( ¬ 𝐴 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } = ∅ ) | |
| 14 | 8 12 13 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ V → 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } ) |
| 15 | 6 14 | pm2.61i | ⊢ 𝐵 = { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐴 } |