This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by BJ, 7-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifass | ⊢ ( ( 𝐴 △ 𝐵 ) △ 𝐶 ) = ( 𝐴 △ ( 𝐵 △ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdifxor | ⊢ ( 𝑥 ∈ ( ( 𝐴 △ 𝐵 ) △ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ⊻ 𝑥 ∈ 𝐶 ) ) | |
| 2 | elsymdifxor | ⊢ ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) ) | |
| 3 | biid | ⊢ ( 𝑥 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶 ) | |
| 4 | 2 3 | xorbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ⊻ 𝑥 ∈ 𝐶 ) ↔ ( ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) ⊻ 𝑥 ∈ 𝐶 ) ) |
| 5 | xorass | ⊢ ( ( ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵 ) ⊻ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ⊻ ( 𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶 ) ) ) | |
| 6 | biid | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) | |
| 7 | elsymdifxor | ⊢ ( 𝑥 ∈ ( 𝐵 △ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶 ) ) | |
| 8 | 7 | bicomi | ⊢ ( ( 𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶 ) ↔ 𝑥 ∈ ( 𝐵 △ 𝐶 ) ) |
| 9 | 6 8 | xorbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 ⊻ ( 𝑥 ∈ 𝐵 ⊻ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ ( 𝐵 △ 𝐶 ) ) ) |
| 10 | 4 5 9 | 3bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 △ 𝐵 ) ⊻ 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ ( 𝐵 △ 𝐶 ) ) ) |
| 11 | elsymdifxor | ⊢ ( 𝑥 ∈ ( 𝐴 △ ( 𝐵 △ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ ( 𝐵 △ 𝐶 ) ) ) | |
| 12 | 11 | bicomi | ⊢ ( ( 𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ ( 𝐵 △ 𝐶 ) ) ↔ 𝑥 ∈ ( 𝐴 △ ( 𝐵 △ 𝐶 ) ) ) |
| 13 | 1 10 12 | 3bitri | ⊢ ( 𝑥 ∈ ( ( 𝐴 △ 𝐵 ) △ 𝐶 ) ↔ 𝑥 ∈ ( 𝐴 △ ( 𝐵 △ 𝐶 ) ) ) |
| 14 | 13 | eqriv | ⊢ ( ( 𝐴 △ 𝐵 ) △ 𝐶 ) = ( 𝐴 △ ( 𝐵 △ 𝐶 ) ) |