This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020) (Proof shortened by BJ, 13-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elsymdifxor | ⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdif | ⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 2 | df-xor | ⊢ ( ( 𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶 ) ) | |
| 3 | 1 2 | bitr4i | ⊢ ( 𝐴 ∈ ( 𝐵 △ 𝐶 ) ↔ ( 𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶 ) ) |