This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012) (Proof shortened by BJ, 7-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifass | |- ( ( A /_\ B ) /_\ C ) = ( A /_\ ( B /_\ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdifxor | |- ( x e. ( ( A /_\ B ) /_\ C ) <-> ( x e. ( A /_\ B ) \/_ x e. C ) ) |
|
| 2 | elsymdifxor | |- ( x e. ( A /_\ B ) <-> ( x e. A \/_ x e. B ) ) |
|
| 3 | biid | |- ( x e. C <-> x e. C ) |
|
| 4 | 2 3 | xorbi12i | |- ( ( x e. ( A /_\ B ) \/_ x e. C ) <-> ( ( x e. A \/_ x e. B ) \/_ x e. C ) ) |
| 5 | xorass | |- ( ( ( x e. A \/_ x e. B ) \/_ x e. C ) <-> ( x e. A \/_ ( x e. B \/_ x e. C ) ) ) |
|
| 6 | biid | |- ( x e. A <-> x e. A ) |
|
| 7 | elsymdifxor | |- ( x e. ( B /_\ C ) <-> ( x e. B \/_ x e. C ) ) |
|
| 8 | 7 | bicomi | |- ( ( x e. B \/_ x e. C ) <-> x e. ( B /_\ C ) ) |
| 9 | 6 8 | xorbi12i | |- ( ( x e. A \/_ ( x e. B \/_ x e. C ) ) <-> ( x e. A \/_ x e. ( B /_\ C ) ) ) |
| 10 | 4 5 9 | 3bitri | |- ( ( x e. ( A /_\ B ) \/_ x e. C ) <-> ( x e. A \/_ x e. ( B /_\ C ) ) ) |
| 11 | elsymdifxor | |- ( x e. ( A /_\ ( B /_\ C ) ) <-> ( x e. A \/_ x e. ( B /_\ C ) ) ) |
|
| 12 | 11 | bicomi | |- ( ( x e. A \/_ x e. ( B /_\ C ) ) <-> x e. ( A /_\ ( B /_\ C ) ) ) |
| 13 | 1 10 12 | 3bitri | |- ( x e. ( ( A /_\ B ) /_\ C ) <-> x e. ( A /_\ ( B /_\ C ) ) ) |
| 14 | 13 | eqriv | |- ( ( A /_\ B ) /_\ C ) = ( A /_\ ( B /_\ C ) ) |