This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function definition of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgnfvalfi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| psgnfvalfi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| psgnfvalfi.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | ||
| psgnfvalfi.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | ||
| Assertion | psgnfvalfi | ⊢ ( 𝐷 ∈ Fin → 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgnfvalfi.g | ⊢ 𝐺 = ( SymGrp ‘ 𝐷 ) | |
| 2 | psgnfvalfi.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 3 | psgnfvalfi.t | ⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) | |
| 4 | psgnfvalfi.n | ⊢ 𝑁 = ( pmSgn ‘ 𝐷 ) | |
| 5 | eqid | ⊢ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } | |
| 6 | 1 2 5 3 4 | psgnfval | ⊢ 𝑁 = ( 𝑥 ∈ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) |
| 7 | 1 2 | sygbasnfpfi | ⊢ ( ( 𝐷 ∈ Fin ∧ 𝑝 ∈ 𝐵 ) → dom ( 𝑝 ∖ I ) ∈ Fin ) |
| 8 | 7 | ralrimiva | ⊢ ( 𝐷 ∈ Fin → ∀ 𝑝 ∈ 𝐵 dom ( 𝑝 ∖ I ) ∈ Fin ) |
| 9 | rabid2 | ⊢ ( 𝐵 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↔ ∀ 𝑝 ∈ 𝐵 dom ( 𝑝 ∖ I ) ∈ Fin ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝐷 ∈ Fin → 𝐵 = { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ) |
| 11 | 10 | eqcomd | ⊢ ( 𝐷 ∈ Fin → { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } = 𝐵 ) |
| 12 | 11 | mpteq1d | ⊢ ( 𝐷 ∈ Fin → ( 𝑥 ∈ { 𝑝 ∈ 𝐵 ∣ dom ( 𝑝 ∖ I ) ∈ Fin } ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
| 13 | 6 12 | eqtrid | ⊢ ( 𝐷 ∈ Fin → 𝑁 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑠 ∃ 𝑤 ∈ Word 𝑇 ( 𝑥 = ( 𝐺 Σg 𝑤 ) ∧ 𝑠 = ( - 1 ↑ ( ♯ ‘ 𝑤 ) ) ) ) ) ) |