This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Length of an extracted subword. (Contributed by AV, 5-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrdlen2 | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> ( # ` ( S substr <. F , L >. ) ) = ( L - F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> S e. Word V ) |
|
| 2 | simpl | |- ( ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) -> F e. NN0 ) |
|
| 3 | eluznn0 | |- ( ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) -> L e. NN0 ) |
|
| 4 | eluzle | |- ( L e. ( ZZ>= ` F ) -> F <_ L ) |
|
| 5 | 4 | adantl | |- ( ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) -> F <_ L ) |
| 6 | 2 3 5 | 3jca | |- ( ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) -> ( F e. NN0 /\ L e. NN0 /\ F <_ L ) ) |
| 7 | 6 | 3ad2ant2 | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> ( F e. NN0 /\ L e. NN0 /\ F <_ L ) ) |
| 8 | elfz2nn0 | |- ( F e. ( 0 ... L ) <-> ( F e. NN0 /\ L e. NN0 /\ F <_ L ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> F e. ( 0 ... L ) ) |
| 10 | 3 | 3ad2ant2 | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> L e. NN0 ) |
| 11 | lencl | |- ( S e. Word V -> ( # ` S ) e. NN0 ) |
|
| 12 | 11 | 3ad2ant1 | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> ( # ` S ) e. NN0 ) |
| 13 | simp3 | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> L <_ ( # ` S ) ) |
|
| 14 | 10 12 13 | 3jca | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> ( L e. NN0 /\ ( # ` S ) e. NN0 /\ L <_ ( # ` S ) ) ) |
| 15 | elfz2nn0 | |- ( L e. ( 0 ... ( # ` S ) ) <-> ( L e. NN0 /\ ( # ` S ) e. NN0 /\ L <_ ( # ` S ) ) ) |
|
| 16 | 14 15 | sylibr | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> L e. ( 0 ... ( # ` S ) ) ) |
| 17 | swrdlen | |- ( ( S e. Word V /\ F e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S substr <. F , L >. ) ) = ( L - F ) ) |
|
| 18 | 1 9 16 17 | syl3anc | |- ( ( S e. Word V /\ ( F e. NN0 /\ L e. ( ZZ>= ` F ) ) /\ L <_ ( # ` S ) ) -> ( # ` ( S substr <. F , L >. ) ) = ( L - F ) ) |