This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inequality deduction for supremum of a subset. (Contributed by Thierry Arnoux, 21-Mar-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supssd.0 | |- ( ph -> R Or A ) |
|
| supssd.1 | |- ( ph -> B C_ C ) |
||
| supssd.2 | |- ( ph -> C C_ A ) |
||
| supssd.3 | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
||
| supssd.4 | |- ( ph -> E. x e. A ( A. y e. C -. x R y /\ A. y e. A ( y R x -> E. z e. C y R z ) ) ) |
||
| Assertion | supssd | |- ( ph -> -. sup ( C , A , R ) R sup ( B , A , R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supssd.0 | |- ( ph -> R Or A ) |
|
| 2 | supssd.1 | |- ( ph -> B C_ C ) |
|
| 3 | supssd.2 | |- ( ph -> C C_ A ) |
|
| 4 | supssd.3 | |- ( ph -> E. x e. A ( A. y e. B -. x R y /\ A. y e. A ( y R x -> E. z e. B y R z ) ) ) |
|
| 5 | supssd.4 | |- ( ph -> E. x e. A ( A. y e. C -. x R y /\ A. y e. A ( y R x -> E. z e. C y R z ) ) ) |
|
| 6 | 1 5 | supcl | |- ( ph -> sup ( C , A , R ) e. A ) |
| 7 | 2 | sseld | |- ( ph -> ( z e. B -> z e. C ) ) |
| 8 | 1 5 | supub | |- ( ph -> ( z e. C -> -. sup ( C , A , R ) R z ) ) |
| 9 | 7 8 | syld | |- ( ph -> ( z e. B -> -. sup ( C , A , R ) R z ) ) |
| 10 | 9 | ralrimiv | |- ( ph -> A. z e. B -. sup ( C , A , R ) R z ) |
| 11 | 1 4 | supnub | |- ( ph -> ( ( sup ( C , A , R ) e. A /\ A. z e. B -. sup ( C , A , R ) R z ) -> -. sup ( C , A , R ) R sup ( B , A , R ) ) ) |
| 12 | 6 10 11 | mp2and | |- ( ph -> -. sup ( C , A , R ) R sup ( B , A , R ) ) |