This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | supsr | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑢 𝑢 ∈ 𝐴 ) | |
| 2 | ltrelsr | ⊢ <R ⊆ ( R × R ) | |
| 3 | 2 | brel | ⊢ ( 𝑦 <R 𝑥 → ( 𝑦 ∈ R ∧ 𝑥 ∈ R ) ) |
| 4 | 3 | simpld | ⊢ ( 𝑦 <R 𝑥 → 𝑦 ∈ R ) |
| 5 | 4 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∀ 𝑦 ∈ 𝐴 𝑦 ∈ R ) |
| 6 | dfss3 | ⊢ ( 𝐴 ⊆ R ↔ ∀ 𝑦 ∈ 𝐴 𝑦 ∈ R ) | |
| 7 | 5 6 | sylibr | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → 𝐴 ⊆ R ) |
| 8 | 7 | sseld | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ R ) ) |
| 9 | 8 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ( 𝑢 ∈ 𝐴 → 𝑢 ∈ R ) ) |
| 10 | 9 | impcom | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → 𝑢 ∈ R ) |
| 11 | eleq1 | ⊢ ( 𝑢 = if ( 𝑢 ∈ R , 𝑢 , 1R ) → ( 𝑢 ∈ 𝐴 ↔ if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ) ) | |
| 12 | 11 | anbi1d | ⊢ ( 𝑢 = if ( 𝑢 ∈ R , 𝑢 , 1R ) → ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ↔ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) ) ) |
| 13 | 12 | imbi1d | ⊢ ( 𝑢 = if ( 𝑢 ∈ R , 𝑢 , 1R ) → ( ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ↔ ( ( if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) ) |
| 14 | opeq1 | ⊢ ( 𝑣 = 𝑤 → 〈 𝑣 , 1P 〉 = 〈 𝑤 , 1P 〉 ) | |
| 15 | 14 | eceq1d | ⊢ ( 𝑣 = 𝑤 → [ 〈 𝑣 , 1P 〉 ] ~R = [ 〈 𝑤 , 1P 〉 ] ~R ) |
| 16 | 15 | oveq2d | ⊢ ( 𝑣 = 𝑤 → ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑣 , 1P 〉 ] ~R ) = ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑤 , 1P 〉 ] ~R ) ) |
| 17 | 16 | eleq1d | ⊢ ( 𝑣 = 𝑤 → ( ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ 𝐴 ↔ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 ) ) |
| 18 | 17 | cbvabv | ⊢ { 𝑣 ∣ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑣 , 1P 〉 ] ~R ) ∈ 𝐴 } = { 𝑤 ∣ ( if ( 𝑢 ∈ R , 𝑢 , 1R ) +R [ 〈 𝑤 , 1P 〉 ] ~R ) ∈ 𝐴 } |
| 19 | 1sr | ⊢ 1R ∈ R | |
| 20 | 19 | elimel | ⊢ if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ R |
| 21 | 18 20 | supsrlem | ⊢ ( ( if ( 𝑢 ∈ R , 𝑢 , 1R ) ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
| 22 | 13 21 | dedth | ⊢ ( 𝑢 ∈ R → ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
| 23 | 10 22 | mpcom | ⊢ ( ( 𝑢 ∈ 𝐴 ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |
| 24 | 23 | ex | ⊢ ( 𝑢 ∈ 𝐴 → ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑢 𝑢 ∈ 𝐴 → ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
| 26 | 1 25 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ R ∀ 𝑦 ∈ 𝐴 𝑦 <R 𝑥 ) → ∃ 𝑥 ∈ R ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀ 𝑦 ∈ R ( 𝑦 <R 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 <R 𝑧 ) ) ) |