This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1sr | ⊢ 1R ∈ R |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr | ⊢ 1P ∈ P | |
| 2 | addclpr | ⊢ ( ( 1P ∈ P ∧ 1P ∈ P ) → ( 1P +P 1P ) ∈ P ) | |
| 3 | 1 1 2 | mp2an | ⊢ ( 1P +P 1P ) ∈ P |
| 4 | opelxpi | ⊢ ( ( ( 1P +P 1P ) ∈ P ∧ 1P ∈ P ) → 〈 ( 1P +P 1P ) , 1P 〉 ∈ ( P × P ) ) | |
| 5 | 3 1 4 | mp2an | ⊢ 〈 ( 1P +P 1P ) , 1P 〉 ∈ ( P × P ) |
| 6 | enrex | ⊢ ~R ∈ V | |
| 7 | 6 | ecelqsi | ⊢ ( 〈 ( 1P +P 1P ) , 1P 〉 ∈ ( P × P ) → [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ∈ ( ( P × P ) / ~R ) ) |
| 8 | 5 7 | ax-mp | ⊢ [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R ∈ ( ( P × P ) / ~R ) |
| 9 | df-1r | ⊢ 1R = [ 〈 ( 1P +P 1P ) , 1P 〉 ] ~R | |
| 10 | df-nr | ⊢ R = ( ( P × P ) / ~R ) | |
| 11 | 8 9 10 | 3eltr4i | ⊢ 1R ∈ R |