This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the operation constructing the support of a function expressed by binary relations. (Contributed by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppvalbr | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 supp 𝑍 ) = { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ dom 𝑅 ∣ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } } = { 𝑥 ∣ ( 𝑥 ∈ dom 𝑅 ∧ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } ) } | |
| 2 | vex | ⊢ 𝑥 ∈ V | |
| 3 | 2 | eldm | ⊢ ( 𝑥 ∈ dom 𝑅 ↔ ∃ 𝑦 𝑥 𝑅 𝑦 ) |
| 4 | imasng | ⊢ ( 𝑥 ∈ V → ( 𝑅 “ { 𝑥 } ) = { 𝑦 ∣ 𝑥 𝑅 𝑦 } ) | |
| 5 | 4 | elv | ⊢ ( 𝑅 “ { 𝑥 } ) = { 𝑦 ∣ 𝑥 𝑅 𝑦 } |
| 6 | 5 | neeq1i | ⊢ ( ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } ↔ { 𝑦 ∣ 𝑥 𝑅 𝑦 } ≠ { 𝑍 } ) |
| 7 | df-sn | ⊢ { 𝑍 } = { 𝑦 ∣ 𝑦 = 𝑍 } | |
| 8 | 7 | neeq2i | ⊢ ( { 𝑦 ∣ 𝑥 𝑅 𝑦 } ≠ { 𝑍 } ↔ { 𝑦 ∣ 𝑥 𝑅 𝑦 } ≠ { 𝑦 ∣ 𝑦 = 𝑍 } ) |
| 9 | nabbib | ⊢ ( { 𝑦 ∣ 𝑥 𝑅 𝑦 } ≠ { 𝑦 ∣ 𝑦 = 𝑍 } ↔ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) | |
| 10 | 6 8 9 | 3bitri | ⊢ ( ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } ↔ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) |
| 11 | 3 10 | anbi12i | ⊢ ( ( 𝑥 ∈ dom 𝑅 ∧ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } ) ↔ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) ) |
| 12 | 11 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ dom 𝑅 ∧ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } ) } = { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) } |
| 13 | 1 12 | eqtr2i | ⊢ { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) } = { 𝑥 ∈ dom 𝑅 ∣ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } } |
| 14 | 13 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) } = { 𝑥 ∈ dom 𝑅 ∣ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } } ) |
| 15 | df-ne | ⊢ ( 𝑦 ≠ 𝑍 ↔ ¬ 𝑦 = 𝑍 ) | |
| 16 | 15 | bibi2i | ⊢ ( ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ↔ ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) |
| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ↔ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) |
| 18 | 17 | anbi2i | ⊢ ( ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) ↔ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) ) |
| 19 | 18 | abbii | ⊢ { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) } = { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) } |
| 20 | 19 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) } = { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ ¬ 𝑦 = 𝑍 ) ) } ) |
| 21 | suppval | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 supp 𝑍 ) = { 𝑥 ∈ dom 𝑅 ∣ ( 𝑅 “ { 𝑥 } ) ≠ { 𝑍 } } ) | |
| 22 | 14 20 21 | 3eqtr4rd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 supp 𝑍 ) = { 𝑥 ∣ ( ∃ 𝑦 𝑥 𝑅 𝑦 ∧ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ↔ 𝑦 ≠ 𝑍 ) ) } ) |