This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for support restrictions: operator with right annihilator. (Contributed by SN, 11-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssov2.s | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ⊆ 𝐿 ) | |
| suppssov2.o | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑣 𝑂 𝑌 ) = 𝑍 ) | ||
| suppssov2.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑅 ) | ||
| suppssov2.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ 𝑉 ) | ||
| suppssov2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) | ||
| Assertion | suppssov2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssov2.s | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ⊆ 𝐿 ) | |
| 2 | suppssov2.o | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑅 ) → ( 𝑣 𝑂 𝑌 ) = 𝑍 ) | |
| 3 | suppssov2.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑅 ) | |
| 4 | suppssov2.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ 𝑉 ) | |
| 5 | suppssov2.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑊 ) | |
| 6 | 4 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ V ) |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐵 ∈ V ) |
| 8 | 7 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝐵 ∈ V ) |
| 9 | oveq1 | ⊢ ( 𝑣 = 𝐴 → ( 𝑣 𝑂 𝑌 ) = ( 𝐴 𝑂 𝑌 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝑣 𝑂 𝑌 ) = 𝑍 ↔ ( 𝐴 𝑂 𝑌 ) = 𝑍 ) ) |
| 11 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑣 ∈ 𝑅 ( 𝑣 𝑂 𝑌 ) = 𝑍 ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ∀ 𝑣 ∈ 𝑅 ( 𝑣 𝑂 𝑌 ) = 𝑍 ) |
| 13 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → 𝐴 ∈ 𝑅 ) |
| 14 | 10 12 13 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐴 𝑂 𝑌 ) = 𝑍 ) |
| 15 | oveq2 | ⊢ ( 𝐵 = 𝑌 → ( 𝐴 𝑂 𝐵 ) = ( 𝐴 𝑂 𝑌 ) ) | |
| 16 | 15 | eqeq1d | ⊢ ( 𝐵 = 𝑌 → ( ( 𝐴 𝑂 𝐵 ) = 𝑍 ↔ ( 𝐴 𝑂 𝑌 ) = 𝑍 ) ) |
| 17 | 14 16 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 = 𝑌 → ( 𝐴 𝑂 𝐵 ) = 𝑍 ) ) |
| 18 | 17 | necon3d | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 𝑂 𝐵 ) ≠ 𝑍 → 𝐵 ≠ 𝑌 ) ) |
| 19 | eldifsni | ⊢ ( ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) → ( 𝐴 𝑂 𝐵 ) ≠ 𝑍 ) | |
| 20 | 18 19 | impel | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝐵 ≠ 𝑌 ) |
| 21 | eldifsn | ⊢ ( 𝐵 ∈ ( V ∖ { 𝑌 } ) ↔ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝑌 ) ) | |
| 22 | 8 20 21 | sylanbrc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) ) → 𝐵 ∈ ( V ∖ { 𝑌 } ) ) |
| 23 | 22 | ex | ⊢ ( ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) → 𝐵 ∈ ( V ∖ { 𝑌 } ) ) ) |
| 24 | 23 | ss2rabdv | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → { 𝑥 ∈ 𝐷 ∣ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) } ⊆ { 𝑥 ∈ 𝐷 ∣ 𝐵 ∈ ( V ∖ { 𝑌 } ) } ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) | |
| 26 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → 𝐷 ∈ V ) | |
| 27 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → 𝑍 ∈ V ) | |
| 28 | 25 26 27 | mptsuppdifd | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) = { 𝑥 ∈ 𝐷 ∣ ( 𝐴 𝑂 𝐵 ) ∈ ( V ∖ { 𝑍 } ) } ) |
| 29 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
| 30 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → 𝑌 ∈ 𝑊 ) |
| 31 | 29 26 30 | mptsuppdifd | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) = { 𝑥 ∈ 𝐷 ∣ 𝐵 ∈ ( V ∖ { 𝑌 } ) } ) |
| 32 | 24 28 31 | 3sstr4d | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ) |
| 33 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) supp 𝑌 ) ⊆ 𝐿 ) |
| 34 | 32 33 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 35 | mptexg | ⊢ ( 𝐷 ∈ V → ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) | |
| 36 | ovex | ⊢ ( 𝐴 𝑂 𝐵 ) ∈ V | |
| 37 | 36 | rgenw | ⊢ ∀ 𝑥 ∈ 𝐷 ( 𝐴 𝑂 𝐵 ) ∈ V |
| 38 | dmmptg | ⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 𝑂 𝐵 ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) = 𝐷 ) | |
| 39 | 37 38 | ax-mp | ⊢ dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) = 𝐷 |
| 40 | dmexg | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V → dom ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) | |
| 41 | 39 40 | eqeltrrid | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V → 𝐷 ∈ V ) |
| 42 | 35 41 | impbii | ⊢ ( 𝐷 ∈ V ↔ ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ) |
| 43 | 42 | anbi1i | ⊢ ( ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ↔ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ∧ 𝑍 ∈ V ) ) |
| 44 | supp0prc | ⊢ ( ¬ ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) = ∅ ) | |
| 45 | 43 44 | sylnbi | ⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) = ∅ ) |
| 46 | 0ss | ⊢ ∅ ⊆ 𝐿 | |
| 47 | 45 46 | eqsstrdi | ⊢ ( ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 48 | 47 | adantl | ⊢ ( ( 𝜑 ∧ ¬ ( 𝐷 ∈ V ∧ 𝑍 ∈ V ) ) → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |
| 49 | 34 48 | pm2.61dan | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐷 ↦ ( 𝐴 𝑂 𝐵 ) ) supp 𝑍 ) ⊆ 𝐿 ) |