This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of functions "defined" by inverse images expressed by binary relations. (Contributed by AV, 7-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvimadfsn | ⊢ ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfima3 | ⊢ ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 ∈ ( V ∖ { 𝑍 } ) ∧ 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ) } | |
| 2 | eldifvsn | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ( V ∖ { 𝑍 } ) ↔ 𝑦 ≠ 𝑍 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑦 ∈ ( V ∖ { 𝑍 } ) ↔ 𝑦 ≠ 𝑍 ) |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 4 5 | opelcnv | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) |
| 7 | df-br | ⊢ ( 𝑥 𝑅 𝑦 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝑅 ) | |
| 8 | 6 7 | bitr4i | ⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ↔ 𝑥 𝑅 𝑦 ) |
| 9 | 3 8 | anbi12ci | ⊢ ( ( 𝑦 ∈ ( V ∖ { 𝑍 } ) ∧ 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ ( V ∖ { 𝑍 } ) ∧ 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ) ↔ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) ) |
| 11 | 10 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑦 ∈ ( V ∖ { 𝑍 } ) ∧ 〈 𝑦 , 𝑥 〉 ∈ ◡ 𝑅 ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) } |
| 12 | 1 11 | eqtri | ⊢ ( ◡ 𝑅 “ ( V ∖ { 𝑍 } ) ) = { 𝑥 ∣ ∃ 𝑦 ( 𝑥 𝑅 𝑦 ∧ 𝑦 ≠ 𝑍 ) } |