This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supfirege.1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| supfirege.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| supfirege.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | ||
| supfirege.4 | ⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , ℝ , < ) ) | ||
| Assertion | supfirege | ⊢ ( 𝜑 → 𝐶 ≤ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supfirege.1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 2 | supfirege.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | supfirege.3 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) | |
| 4 | supfirege.4 | ⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , ℝ , < ) ) | |
| 5 | ltso | ⊢ < Or ℝ | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → < Or ℝ ) |
| 7 | 6 1 2 3 4 | supgtoreq | ⊢ ( 𝜑 → ( 𝐶 < 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 8 | 1 3 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 9 | 3 | ne0d | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 10 | fisupcl | ⊢ ( ( < Or ℝ ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ) → sup ( 𝐵 , ℝ , < ) ∈ 𝐵 ) | |
| 11 | 6 2 9 1 10 | syl13anc | ⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ 𝐵 ) |
| 12 | 4 11 | eqeltrd | ⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) |
| 13 | 1 12 | sseldd | ⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 14 | 8 13 | leloed | ⊢ ( 𝜑 → ( 𝐶 ≤ 𝑆 ↔ ( 𝐶 < 𝑆 ∨ 𝐶 = 𝑆 ) ) ) |
| 15 | 7 14 | mpbird | ⊢ ( 𝜑 → 𝐶 ≤ 𝑆 ) |