This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supfirege.1 | |- ( ph -> B C_ RR ) |
|
| supfirege.2 | |- ( ph -> B e. Fin ) |
||
| supfirege.3 | |- ( ph -> C e. B ) |
||
| supfirege.4 | |- ( ph -> S = sup ( B , RR , < ) ) |
||
| Assertion | supfirege | |- ( ph -> C <_ S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supfirege.1 | |- ( ph -> B C_ RR ) |
|
| 2 | supfirege.2 | |- ( ph -> B e. Fin ) |
|
| 3 | supfirege.3 | |- ( ph -> C e. B ) |
|
| 4 | supfirege.4 | |- ( ph -> S = sup ( B , RR , < ) ) |
|
| 5 | ltso | |- < Or RR |
|
| 6 | 5 | a1i | |- ( ph -> < Or RR ) |
| 7 | 6 1 2 3 4 | supgtoreq | |- ( ph -> ( C < S \/ C = S ) ) |
| 8 | 1 3 | sseldd | |- ( ph -> C e. RR ) |
| 9 | 3 | ne0d | |- ( ph -> B =/= (/) ) |
| 10 | fisupcl | |- ( ( < Or RR /\ ( B e. Fin /\ B =/= (/) /\ B C_ RR ) ) -> sup ( B , RR , < ) e. B ) |
|
| 11 | 6 2 9 1 10 | syl13anc | |- ( ph -> sup ( B , RR , < ) e. B ) |
| 12 | 4 11 | eqeltrd | |- ( ph -> S e. B ) |
| 13 | 1 12 | sseldd | |- ( ph -> S e. RR ) |
| 14 | 8 13 | leloed | |- ( ph -> ( C <_ S <-> ( C < S \/ C = S ) ) ) |
| 15 | 7 14 | mpbird | |- ( ph -> C <_ S ) |