This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Metamath Proof Explorer
Description: The supremum of a finite set of real numbers is greater than or equal to
all the real numbers of the set. (Contributed by AV, 1-Oct-2019)
|
|
Ref |
Expression |
|
Hypotheses |
supfirege.1 |
|
|
|
supfirege.2 |
|
|
|
supfirege.3 |
|
|
|
supfirege.4 |
|
|
Assertion |
supfirege |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supfirege.1 |
|
| 2 |
|
supfirege.2 |
|
| 3 |
|
supfirege.3 |
|
| 4 |
|
supfirege.4 |
|
| 5 |
|
ltso |
|
| 6 |
5
|
a1i |
|
| 7 |
6 1 2 3 4
|
supgtoreq |
|
| 8 |
1 3
|
sseldd |
|
| 9 |
3
|
ne0d |
|
| 10 |
|
fisupcl |
|
| 11 |
6 2 9 1 10
|
syl13anc |
|
| 12 |
4 11
|
eqeltrd |
|
| 13 |
1 12
|
sseldd |
|
| 14 |
8 13
|
leloed |
|
| 15 |
7 14
|
mpbird |
|