This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sucel | ⊢ ( suc 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | risset | ⊢ ( suc 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ) | |
| 2 | dfcleq | ⊢ ( 𝑥 = suc 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴 ) ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | elsuc | ⊢ ( 𝑦 ∈ suc 𝐴 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) |
| 5 | 4 | bibi2i | ⊢ ( ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴 ) ↔ ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ suc 𝐴 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
| 7 | 2 6 | bitri | ⊢ ( 𝑥 = suc 𝐴 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝑥 = suc 𝐴 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |
| 9 | 1 8 | bitri | ⊢ ( suc 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ( 𝑦 ∈ 𝑥 ↔ ( 𝑦 ∈ 𝐴 ∨ 𝑦 = 𝐴 ) ) ) |