This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrngringnsg | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 2 | subrngrcl | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) | |
| 3 | rngabl | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) | |
| 4 | 2 3 | syl | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Abel ) |
| 5 | 4 | 3anim1i | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 6 | 5 | 3expb | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 9 | 7 8 | ablcom | ⊢ ( ( 𝑅 ∈ Abel ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 10 | 6 9 | syl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ) |
| 11 | 10 | eleq1d | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 ↔ ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) |
| 12 | 11 | biimpd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) |
| 14 | 7 8 | isnsg2 | ⊢ ( 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) ↔ ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( +g ‘ 𝑅 ) 𝑦 ) ∈ 𝐴 → ( 𝑦 ( +g ‘ 𝑅 ) 𝑥 ) ∈ 𝐴 ) ) ) |
| 15 | 1 13 14 | sylanbrc | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 ∈ ( NrmSGrp ‘ 𝑅 ) ) |