This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subrngringnsg | |- ( A e. ( SubRng ` R ) -> A e. ( NrmSGrp ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngsubg | |- ( A e. ( SubRng ` R ) -> A e. ( SubGrp ` R ) ) |
|
| 2 | subrngrcl | |- ( A e. ( SubRng ` R ) -> R e. Rng ) |
|
| 3 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 4 | 2 3 | syl | |- ( A e. ( SubRng ` R ) -> R e. Abel ) |
| 5 | 4 | 3anim1i | |- ( ( A e. ( SubRng ` R ) /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) |
| 6 | 5 | 3expb | |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) |
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 9 | 7 8 | ablcom | |- ( ( R e. Abel /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) = ( y ( +g ` R ) x ) ) |
| 10 | 6 9 | syl | |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( x ( +g ` R ) y ) = ( y ( +g ` R ) x ) ) |
| 11 | 10 | eleq1d | |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) e. A <-> ( y ( +g ` R ) x ) e. A ) ) |
| 12 | 11 | biimpd | |- ( ( A e. ( SubRng ` R ) /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) |
| 13 | 12 | ralrimivva | |- ( A e. ( SubRng ` R ) -> A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) |
| 14 | 7 8 | isnsg2 | |- ( A e. ( NrmSGrp ` R ) <-> ( A e. ( SubGrp ` R ) /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) ( ( x ( +g ` R ) y ) e. A -> ( y ( +g ` R ) x ) e. A ) ) ) |
| 15 | 1 13 14 | sylanbrc | |- ( A e. ( SubRng ` R ) -> A e. ( NrmSGrp ` R ) ) |