This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submagmas are an algebraic closure system. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submgmacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| Assertion | submgmacs | ⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submgmacs.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | issubmgm | ⊢ ( 𝐺 ∈ Mgm → ( 𝑠 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
| 4 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) |
| 6 | 3 5 | bitr4di | ⊢ ( 𝐺 ∈ Mgm → ( 𝑠 ∈ ( SubMgm ‘ 𝐺 ) ↔ ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
| 7 | 6 | eqabdv | ⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } ) |
| 8 | df-rab | ⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } | |
| 9 | 7 8 | eqtr4di | ⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) |
| 10 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 11 | 1 2 | mgmcl | ⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 12 | 11 | 3expb | ⊢ ( ( 𝐺 ∈ Mgm ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 13 | 12 | ralrimivva | ⊢ ( 𝐺 ∈ Mgm → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 14 | acsfn2 | ⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) | |
| 15 | 10 13 14 | sylancr | ⊢ ( 𝐺 ∈ Mgm → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
| 16 | 9 15 | eqeltrd | ⊢ ( 𝐺 ∈ Mgm → ( SubMgm ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |