This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction from a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sub2cncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝐴 − 𝑥 ) ) | |
| Assertion | sub2cncf | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sub2cncf.1 | ⊢ 𝐹 = ( 𝑥 ∈ ℂ ↦ ( 𝐴 − 𝑥 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | subcn | ⊢ − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 4 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → − ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 5 | ssid | ⊢ ℂ ⊆ ℂ | |
| 6 | cncfmptc | ⊢ ( ( 𝐴 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 7 | 5 5 6 | mp3an23 | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝐴 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 8 | eqid | ⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) | |
| 9 | 8 | idcncf | ⊢ ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) |
| 10 | 9 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ 𝑥 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 11 | 2 4 7 10 | cncfmpt2f | ⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( 𝐴 − 𝑥 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 12 | 1 11 | eqeltrid | ⊢ ( 𝐴 ∈ ℂ → 𝐹 ∈ ( ℂ –cn→ ℂ ) ) |