This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of vertices of a graph represented as an extensible structure with the set of vertices as base set. (Contributed by AV, 14-Oct-2020) (Revised by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | basvtxval.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| basvtxval.d | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) | ||
| basvtxval.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) | ||
| basvtxval.b | ⊢ ( 𝜑 → 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 ) | ||
| Assertion | basvtxval | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | basvtxval.s | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 2 | basvtxval.d | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) | |
| 3 | basvtxval.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) | |
| 4 | basvtxval.b | ⊢ ( 𝜑 → 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 ) | |
| 5 | structn0fun | ⊢ ( 𝐺 Struct 𝑋 → Fun ( 𝐺 ∖ { ∅ } ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → Fun ( 𝐺 ∖ { ∅ } ) ) |
| 7 | funvtxdmge2val | ⊢ ( ( Fun ( 𝐺 ∖ { ∅ } ) ∧ 2 ≤ ( ♯ ‘ dom 𝐺 ) ) → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) | |
| 8 | 6 2 7 | syl2anc | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 9 | 1 3 4 | opelstrbas | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝐺 ) ) |
| 10 | 8 9 | eqtr4d | ⊢ ( 𝜑 → ( Vtx ‘ 𝐺 ) = 𝑉 ) |