This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any representation of a graph G (especially as extensible structure G = { <. ( Basendx ) , V >. , <. ( .efndx ) , E >. } ) is convertible in a representation of the graph as ordered pair. (Contributed by AV, 7-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | graop.h | ⊢ 𝐻 = 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 | |
| Assertion | graop | ⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | graop.h | ⊢ 𝐻 = 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 | |
| 2 | 1 | fveq2i | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 3 | fvex | ⊢ ( Vtx ‘ 𝐺 ) ∈ V | |
| 4 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 5 | 3 4 | opvtxfvi | ⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( Vtx ‘ 𝐺 ) |
| 6 | 2 5 | eqtr2i | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) |
| 7 | 1 | fveq2i | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
| 8 | 3 4 | opiedgfvi | ⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( iEdg ‘ 𝐺 ) |
| 9 | 7 8 | eqtr2i | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) |
| 10 | 6 9 | pm3.2i | ⊢ ( ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐻 ) ) |