This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of indexed edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 14-Oct-2020) (Proof shortened by AV, 12-Nov-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | structgrssvtx.g | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| structgrssvtx.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) | ||
| structgrssvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑍 ) | ||
| structgrssvtx.s | ⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 ) | ||
| Assertion | structgrssiedg | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | structgrssvtx.g | ⊢ ( 𝜑 → 𝐺 Struct 𝑋 ) | |
| 2 | structgrssvtx.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑌 ) | |
| 3 | structgrssvtx.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑍 ) | |
| 4 | structgrssvtx.s | ⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 ) | |
| 5 | 1 2 3 4 | structgrssvtxlem | ⊢ ( 𝜑 → 2 ≤ ( ♯ ‘ dom 𝐺 ) ) |
| 6 | opex | ⊢ 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ V | |
| 7 | opex | ⊢ 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ V | |
| 8 | 6 7 | prss | ⊢ ( ( 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 ∧ 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) ↔ { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 ) |
| 9 | simpr | ⊢ ( ( 〈 ( Base ‘ ndx ) , 𝑉 〉 ∈ 𝐺 ∧ 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) → 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) | |
| 10 | 8 9 | sylbir | ⊢ ( { 〈 ( Base ‘ ndx ) , 𝑉 〉 , 〈 ( .ef ‘ ndx ) , 𝐸 〉 } ⊆ 𝐺 → 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) |
| 11 | 4 10 | syl | ⊢ ( 𝜑 → 〈 ( .ef ‘ ndx ) , 𝐸 〉 ∈ 𝐺 ) |
| 12 | 1 5 3 11 | edgfiedgval | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = 𝐸 ) |