This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector addition on a subspace is a restriction of vector addition on the parent space. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sspg.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| sspg.g | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| sspg.f | ⊢ 𝐹 = ( +𝑣 ‘ 𝑊 ) | ||
| sspg.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | ||
| Assertion | sspg | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sspg.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 2 | sspg.g | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | sspg.f | ⊢ 𝐹 = ( +𝑣 ‘ 𝑊 ) | |
| 4 | sspg.h | ⊢ 𝐻 = ( SubSp ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 6 | 5 2 | nvgf | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 : ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ⟶ ( BaseSet ‘ 𝑈 ) ) |
| 7 | 6 | ffund | ⊢ ( 𝑈 ∈ NrmCVec → Fun 𝐺 ) |
| 8 | 7 | funresd | ⊢ ( 𝑈 ∈ NrmCVec → Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 10 | 4 | sspnv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑊 ∈ NrmCVec ) |
| 11 | 1 3 | nvgf | ⊢ ( 𝑊 ∈ NrmCVec → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑌 ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 : ( 𝑌 × 𝑌 ) ⟶ 𝑌 ) |
| 13 | 12 | ffnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 Fn ( 𝑌 × 𝑌 ) ) |
| 14 | fnresdm | ⊢ ( 𝐹 Fn ( 𝑌 × 𝑌 ) → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) = 𝐹 ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) = 𝐹 ) |
| 16 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 17 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 19 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 20 | 2 3 16 17 18 19 4 | isssp | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑊 ∈ 𝐻 ↔ ( 𝑊 ∈ NrmCVec ∧ ( 𝐹 ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) ) ) |
| 21 | 20 | simplbda | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ⊆ 𝐺 ∧ ( ·𝑠OLD ‘ 𝑊 ) ⊆ ( ·𝑠OLD ‘ 𝑈 ) ∧ ( normCV ‘ 𝑊 ) ⊆ ( normCV ‘ 𝑈 ) ) ) |
| 22 | 21 | simp1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 ⊆ 𝐺 ) |
| 23 | ssres | ⊢ ( 𝐹 ⊆ 𝐺 → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) | |
| 24 | 22 23 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ↾ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 25 | 15 24 | eqsstrrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |
| 26 | 9 13 25 | 3jca | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ∧ 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ 𝐹 ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 27 | oprssov | ⊢ ( ( ( Fun ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ∧ 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ 𝐹 ⊆ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐹 𝑦 ) ) | |
| 28 | 26 27 | sylan | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) = ( 𝑥 𝐹 𝑦 ) ) |
| 29 | 28 | eqcomd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
| 30 | 29 | ralrimivva | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) |
| 31 | eqid | ⊢ ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) | |
| 32 | 30 31 | jctil | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) |
| 33 | 6 | ffnd | ⊢ ( 𝑈 ∈ NrmCVec → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
| 35 | 5 1 4 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) |
| 36 | xpss12 | ⊢ ( ( 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ∧ 𝑌 ⊆ ( BaseSet ‘ 𝑈 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) | |
| 37 | 35 35 36 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) |
| 38 | fnssres | ⊢ ( ( 𝐺 Fn ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ∧ ( 𝑌 × 𝑌 ) ⊆ ( ( BaseSet ‘ 𝑈 ) × ( BaseSet ‘ 𝑈 ) ) ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) | |
| 39 | 34 37 38 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) |
| 40 | eqfnov | ⊢ ( ( 𝐹 Fn ( 𝑌 × 𝑌 ) ∧ ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) Fn ( 𝑌 × 𝑌 ) ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) | |
| 41 | 13 39 40 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ↔ ( ( 𝑌 × 𝑌 ) = ( 𝑌 × 𝑌 ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑥 𝐹 𝑦 ) = ( 𝑥 ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) 𝑦 ) ) ) ) |
| 42 | 32 41 | mpbird | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ 𝐻 ) → 𝐹 = ( 𝐺 ↾ ( 𝑌 × 𝑌 ) ) ) |