This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset theorem for an indexed intersection. (Contributed by FL, 15-Oct-2012) (Proof shortened by Mario Carneiro, 14-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ssiinf.1 | ⊢ Ⅎ 𝑥 𝐶 | |
| Assertion | ssiinf | ⊢ ( 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssiinf.1 | ⊢ Ⅎ 𝑥 𝐶 | |
| 2 | eliin | ⊢ ( 𝑦 ∈ V → ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 4 | 3 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) |
| 5 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 6 | 1 5 | ralcomf | ⊢ ( ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
| 7 | 4 6 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
| 8 | dfss3 | ⊢ ( 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ) | |
| 9 | dfss3 | ⊢ ( 𝐶 ⊆ 𝐵 ↔ ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) | |
| 10 | 9 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐶 𝑦 ∈ 𝐵 ) |
| 11 | 7 8 10 | 3bitr4i | ⊢ ( 𝐶 ⊆ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) |