This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of join for subsets of Hilbert space in terms of supremum: the join is the supremum of its two arguments. Based on the definition of join in Beran p. 3. For later convenience we prove a general version that works for any subset of Hilbert space, not just the elements of the lattice CH . (Contributed by NM, 2-Mar-2004) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sshjval3 | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | 1 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ℋ ↔ 𝐴 ⊆ ℋ ) |
| 3 | 1 | elpw2 | ⊢ ( 𝐵 ∈ 𝒫 ℋ ↔ 𝐵 ⊆ ℋ ) |
| 4 | uniprg | ⊢ ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) | |
| 5 | 2 3 4 | syl2anbr | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 6 | 5 | fveq2d | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) = ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ⊥ ‘ ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 8 | prssi | ⊢ ( ( 𝐴 ∈ 𝒫 ℋ ∧ 𝐵 ∈ 𝒫 ℋ ) → { 𝐴 , 𝐵 } ⊆ 𝒫 ℋ ) | |
| 9 | 2 3 8 | syl2anbr | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → { 𝐴 , 𝐵 } ⊆ 𝒫 ℋ ) |
| 10 | hsupval | ⊢ ( { 𝐴 , 𝐵 } ⊆ 𝒫 ℋ → ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) = ( ⊥ ‘ ( ⊥ ‘ ∪ { 𝐴 , 𝐵 } ) ) ) |
| 12 | sshjval | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) | |
| 13 | 7 11 12 | 3eqtr4rd | ⊢ ( ( 𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( ∨ℋ ‘ { 𝐴 , 𝐵 } ) ) |